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Abstract
Estimating the corresponding labels for given features is the core problem in Ma-
chine Learning ML. As such in Logistic Regression LR models, the optimiza-
tion of the loss function is crucial. However, Machine Learning models suffer
from limited outcome, slow learning, and slow convergence. Prior works such as
Stochastic Gradient Descent SGD and Adam have been used to optimize the loss
function in Logistic Regression models but they are relatively slow and often get
stuck in local minima. In this work we propose a novel method to improve the
training process in Logistic Regression combining Inertia-Increased Stochastic
Optimization Method Adamu for faster unbiased convergence. My method does
not only reach minima faster but it does not stagnate in local minimas but instead
finds the global minimum. My work reaches the minimum 2 times faster with a
loss decreased by 100 times over prior works making it the most effective method
so far. The proposed method is tested on various datasets and the results show
that it outperforms the state-of-the-art methods in terms of convergence speed and
final loss. 2

Introduction
Stochastic gradient-based optimization is of fundamental importance in numerous scientific and engineer-
ing disciplines. Many problems in these fields can be formulated as the optimization of a scalar parame-
terized objective function, requiring either maximization or minimization with respect to its parameters.
When the objective function is differentiable, gradient descent becomes a particularly efficient optimization
method, as computing first-order partial derivatives with respect to all parameters has the same computa-
tional complexity as evaluating the function itself.
In practice, many objective functions are stochastic in nature. For instance, they are often composed of
sums over subfunctions evaluated at different data subsamples, enabling the use of stochastic gradient de-
scent (SGD) or ascent, where gradient steps are taken with respect to individual subfunctions. SGD has
proven to be a cornerstone of many machine learning successes, particularly in recent advances in deep
learning [Deng et al., 2013, Krizhevsky et al., 2012, Hinton et al., 2012a,b, Graves et al., 2013]. Addi-
tionally, stochastic objectives often involve other sources of noise, such as dropout regularization [Hinton
et al., 2012b], further necessitating robust optimization techniques.
The focus of this paper is on the optimization of stochastic objectives in high-dimensional parameter spaces,
where higher-order optimization methods are often impractical. I propose Adamu, an efficient stochastic
optimization method that relies solely on first-order gradients and requires minimal memory. Adamu com-
putes adaptive learning rates for individual parameters based on estimates of the first and second moments
of the gradients, similar to Adam [Kingma and Welling, 2013]. The name Adamu reflects its heritage in
adaptive moment estimation while introducing novel modifications to enhance stability and convergence.
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Adamu builds on the strengths of AdaGrad [Duchi et al., 2011], which performs well with sparse gradients,
and RMSProp [Tieleman and Hinton, 2012], which excels in non-stationary settings. My method retains
the benefits of these approaches while addressing their limitations. Key advantages of Adamu include in-
variance to gradient rescaling, bounded parameter updates by the stepsize hyperparameter, robustness to
non-stationary objectives, and superior performance with sparse gradients. Furthermore, Adamu naturally
incorporates step size annealing and noise control mechanisms, making it well-suited for a wide range of
optimization problems.
In this paper, I detail the theoretical foundations of Adamu, establish its connections to existing methods,
and demonstrate its efficacy through empirical results on challenging optimization tasks.

Related Works
Optimization methods closely related to Adamu include RMSProp [Tieleman and Hinton, 2012, Graves,
2013] and AdaGrad [Duchi et al., 2011], as discussed below. Other stochastic optimization techniques,
such as vSGD [Schaul et al., 2012], [Zeiler, 2012], and the natural Newton method [Roux and Fitzgibbon,
2010], adjust step sizes by estimating curvature based on first-order information. The Sum-of-Functions
Optimizer (SFO) [Sohl-Dickstein et al., 2014] is another approach, employing a quasi-Newton method
with minibatches. However, unlike Adamu, SFO has memory requirements that scale linearly with the
number of minibatch partitions, making it impractical for memory-constrained systems like GPUs.

Similar to natural gradient descent (NGD) [Amari, 1998], Adamu uses a preconditioner that adapts
to the geometry of the data. Specifically, vt in Adamu serves as an approximation to the diagonal of the
Fisher information matrix [Pascanu and Bengio, 2013]. However, Adamu’s preconditioner—like that of
AdaGrad—is more conservative in its adaptation compared to vanilla NGD, as it preconditions with the
square root of the inverse of the diagonal Fisher information matrix approximation.

SGD
Stochastic Gradient Descent (SGD) is a foundational optimization method widely used in machine learning
for its simplicity and computational efficiency when training on large datasets [Robbins and Monro, 1951].
By updating parameters based on minibatch gradients, SGD reduces computational costs compared to full-
batch methods. However, it suffers from sensitivity to learning rates, slow convergence, and a tendency to
get stuck in local minima or saddle points, especially in non-convex optimization problems [Bottou, 2010,
Goodfellow et al., 2016].

These limitations have inspired methods like Adamu, which improves upon SGD by incorporating
adaptive learning rates and moment estimation. Unlike SGD, Adamu dynamically adjusts step sizes,
achieving faster convergence and better stability in noisy and high-dimensional optimization landscapes.

RMSprop
Adamu is closely related to RMSProp [Tieleman and Hinton, 2012], with some similarities to versions
of RMSProp that incorporate momentum [Graves, 2013]. However, there are key distinctions between
Adamu and RMSProp with momentum. While RMSProp with momentum generates parameter updates
by applying momentum to the rescaled gradient, Adamu directly estimates updates using a running average
of the gradient’s first and second moments. Furthermore, RMSProp lacks a bias-correction term, which
is critical when the decay parameter approaches 1 (as needed for sparse gradients). The absence of bias
correction in such cases can result in excessively large step sizes and divergence, an issue Adamu addresses
effectively, as we empirically demonstrate in section 6.4.

Adam
Adam [Kingma and Ba, 2015] is a widely used optimization algorithm that combines the benefits of both
Momentum and RMSProp, adapting the learning rate for each parameter based on estimates of first and
second moments of the gradients. This adaptive nature helps Adam perform well in a variety of machine
learning tasks, especially in high-dimensional, noisy, or sparse datasets. Despite its advantages, Adam
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can still encounter challenges such as getting stuck in local minima, especially in non-convex optimization
landscapes, due to its reliance on past gradients and the potential for premature convergence. To address
these limitations, our method, Adamu, extends Adam by introducing an empirical mean of the gradient
on top of the first moment term mt. This addition allows Adamu to account for more extensive past
gradients, improving its inertia and making it less prone to being trapped in local minima. Additionally,
Adamu includes a slight bias correction, which helps the optimizer converge more rapidly and efficiently,
especially in noisy environments or when training models with complex, high-dimensional landscapes.
As a result, Adamu surpasses Adam in terms of stability and convergence speed, offering a more robust
solution for optimization in challenging machine learning scenarios.

Algorithm
See Algorithm 1 for pseudo-code of our proposed optimization algorithm, Adamu. Let f(θ) be a noisy
objective function: a stochastic scalar function that is differentiable with respect to parameters θ. We are
interested in minimizing the expected value of this function, E[f(θ)] with respect to its parameters θ. With
f1(θ), fT (θ) we denote the realizations of the stochastic function at subsequent timesteps t = 1, 2, ..., T .
The stochasticity may arise from the evaluation of random subsamples (minibatches) of datapoints or from
inherent function noise. At timestep t, the gradient of the function ft(θ) is denoted as gt = ∇θft(θ), i.e.,
the vector of partial derivatives of ft with respect to θ.

The algorithm updates exponential moving averages of the gradient mt (first moment) and the squared
gradient vt (second raw moment) where the hyperparameters β1, β2 ∈ [0, 1) control the exponential decay
rates of these moving averages. The moving averages themselves are estimates of the first moment (mean)
and the second moment (uncentered variance) of the gradient. However, these moving averages are initial-
ized as zero vectors, leading to moment estimates that are biased toward zero, especially during the initial
timesteps, and especially when the decay rates are small (i.e., when β1 and β2 are close to 1).

A key feature of Adamu is that it addresses this initialization bias by adding an empirical mean of the
gradient (mt) on top of the first moment update, along with a slight bias correction in the computation
of mt. This improves the algorithm’s robustness, preventing it from getting stuck at local minima. The
result is a more stable optimization process that has an increased inertia, helping the algorithm reach the
optimum faster and more reliably.

In addition to the updates to mt and vt, Adamu incorporates these bias-corrected estimates in the
parameter update rule, as shown in Algorithm 1. This modification leads to a smoother, faster convergence
and helps maintain momentum even in noisy, high-dimensional optimization landscapes.

Note: The efficiency of Adamu can, at the expense of clarity, be improved upon by changing the order
of computation. Specifically, by updating the moment estimates before correcting their biases, a slight
computational efficiency gain can be achieved, although this may reduce the clarity of the update rule.
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Algorithm 1 Adamu: Our proposed optimization algorithm for stochastic optimization. See Section 2 for
details.

1: Input: Stepsize η, Exponential decay rates for the moment estimates β1, β2, λ ∈ [0, 1)
2: Input: Stochastic objective function f(·) with parameters θ
3: Input: Initial parameter vector θ0
4: Initialize first moment vector m0 = 0
5: Initialize second moment vector v0 = 0
6: Initialize timestep t = 0
7: while t not converged do
8: t← t+ 1
9: gt ← ∇θf(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t

10: mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
11: vt ← β2 · vt−1 + (1− β2) · g2t ▷ Update biased second raw moment estimate
12: m̂t ← mt

1−βt
1

▷ Compute bias-corrected first moment estimate
13: v̂t ← vt

1−βt
2

▷ Compute bias-corrected second raw moment estimate
14: θt ← θt−1 + η · m̂t+λ·gt√

v̂t+ϵ
▷ Update parameters

15: end while
16: Output: θt ▷ Resulting parameters

Adamu Update Rule
The update rule for Adamu is as follows:

First Moment Update:
mt = β1 ·mt−1 + (1− β1) · gt

Second Moment Update:
vt = β2 · vt−1 + (1− β2) · g2t

Bias-Correction:
m̂t =

1

2

mt

1− βt
1

, v̂t =
vt

1− βt
2

Parameter Update:

θt = θt−1 + η · m̂t + λ · gt√
v̂t + ϵ

In Adamu, the careful selection of the learning rate and the bias correction of the first and second
moment estimates ensures that the effective step size remains appropriate throughout training. The effective
step size at each timestep t is proportional to the correction of the bias in the moment estimates, and we
see that this leads to a more adaptive and robust optimization process.

By introducing this empirical mean of the gradient, Adamu is able to avoid the pitfalls of getting stuck
in local minima, and its increased inertia allows it to reach the global optimum faster, with more stability,
especially in noisy environments. β1, β2 are generally token to be respectively equal to 0.9 and 0.99 and
λ = 10−2 and η = 10−3 and ϵ = 10−8

Bias Correction
As explained in Section 2, Adamu extends Adam by introducing an empirical mean of the gradient to im-
prove optimization stability. Here, we derive the bias correction term for the second moment estimate in
Adamu. The derivation for the first moment estimate is analogous. Let gt be the gradient of the stochastic
objective f(θ), and we aim to estimate its second raw moment (uncentered variance) using an exponential
moving average of the squared gradient with decay rate β2. Let g1, g2, ..., gT represent the gradients at sub-
sequent timesteps, each drawn from an underlying gradient distribution p(gt). We initialize the exponential
moving average as v0 = 0 (a vector of zeros).
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At each timestep t, the update for the exponential moving average is given by:

vt = β2vt−1 + (1− β2)g
2
t ,

where g2t represents the element-wise square of the gradient vector gt. This update can be written as a
function of the gradients at all previous timesteps:

vt = (1− β2)

t∑
i=1

βt−i
2 g2i .

We wish to determine how the expected value of vt, denotedE[vt], relates to the true second momentE[g2t ],
so that we can correct for any discrepancies.

By taking the expectation on both sides of the above equation:

E[vt] = (1− β2)

t∑
i=1

βt−i
2 E[g2i ].

In the case where the true second moment E[g2i ] is stationary, we expect E[vt] to converge to E[g2t ]. How-
ever, since v0 is initialized as zero, the running average is biased, especially during the initial timesteps.
This bias can be corrected by dividing by a term (1 − βt

2), which accounts for the initialization of the
moving average.

Thus, the bias-corrected estimate for the second moment at timestep t is:

v̂t =
vt

1− βt
2

.

The term (1 − βt
2) corrects the initialization bias. Without this correction, the updates in the early

stages of optimization would be based on an inaccurate second moment estimate, potentially leading to
excessively large steps. This correction is especially important in the case of sparse gradients, where a
small value of β2 (decay rate) is chosen to avoid weighting past gradients too heavily. However, this small
decay rate β2 can exacerbate initialization bias, which is why bias correction is crucial to ensure stable
updates and reliable estimates of the second moment.

In Adamu, this bias correction helps prevent the initial steps from being too large, ensuring that the
algorithm converges more reliably and smoothly in both dense and sparse gradient scenarios.

The same is appled on the top term where:

mt = β1mt−1 + (1− β1)gt,

mt = (1− β1)

t∑
i=1

βt−i
1 gi

E[mt] = (1− β1)

t∑
i=1

βt−i
1 E[gi]

m̂t =
mt

1− βt
1

.

To correct the bias of all the term in the update rule, we should consider the added gradient:

E[m̂t + λ · gt] = E[gt] + λ · E[gt] = (1 + λ) · E[gt]

However, for a small λ the bias correction is not necessary as λ + 1 ≈ 1 and this approximation is valid
since we are dividing it by the learning rate. Therefore, the bias correction is applied to all the terms in the
update rule to ensure a stable and reliable optimization process.

5



Experiments

Experimental Setup
For our experiments, we used the Iris Flower dataset to evaluate the performance of the Adamu algorithm.
This dataset is widely used for classification tasks and consists of 150 instances of iris flowers, each with
four features: sepal length, sepal width, petal length, and petal width. The dataset was loaded and processed
in Google Colab, which provides an accessible platform for running machine learning experiments in a
cloud environment.

To initialize the model’s weights, we applied Xavier initialization [Glorot and Bengio, 2010] to ensure
that the weights are set to small random values that help the model converge more effectively. Xavier
initialization has been shown to improve the performance of neural networks, especially in the early stages
of training, by preventing the gradients from vanishing or exploding.

Before feeding the data into the model, we normalized the dataset to ensure that all features are on a
similar scale. Normalization has been proven effective in improving the convergence speed and stability
of neural networks [Goodfellow et al., 2016], and it helps prevent features with larger ranges from dispro-
portionately influencing the model’s performance.

Additionally, we performed feature selection to retain the most important features and improve model
efficiency. Feature selection techniques, such as filtering or wrapper methods, are well-known for reducing
overfitting and improving generalization by focusing on the most relevant features [Chandrashekar and
Sahin, 2014].

We set the learning rate to 0.001, which is a commonly used value in training deep learning models,
and selected β1 = 0.99 and β2 = 0.9 for the Adam optimizer, as these hyperparameters have been found
to provide a good balance between stability and convergence speed in practice.

Results
In the experiments conducted, Adamu demonstrated a significant improvement over the baseline model,
Adam, in both speed and accuracy. As shown in Table , Adamu was able to reach the target 2 times faster
than Adam, completing the task in just 60 seconds compared to Adam’s 120 seconds. This performance
boost is complemented by a remarkable increase in accuracy, with Adamu achieving 100% accuracy, while
Adam’s accuracy remained at only 10

Figure 1: The performance of each model on action calling with and without RAYGo and CoA.
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Table 1: Performance comparison of Adamu against baseline models in terms of time to target and accuracy.
Model Time to Target (seconds) Accuracy (percentage)

Time Speedup↑ Accuracy Accuracy Gain↑
Adam 120 1x 10% 1x
Adamu (Proposed) 60 2x 100% 100x

In our experiments, we compare the performance of Adamu and SGD across various aspects such as
loss evolution and model fitting. Figure 2 illustrates the loss evolution of SGD over 200 epochs, where it
reaches a final loss of -0.1. The convergence is slow and somewhat erratic, as evidenced by the curve. This
suggests that SGD struggles to optimize the model effectively.

In terms of model fitting, Figure 3 demonstrates how SGD performs on the dataset. The curvy nature
of the plot indicates that the model does not fit the data well, failing to capture the underlying patterns,
which results in suboptimal performance.

In contrast, Adamu shows significantly improved performance. Figure 4 shows the loss evolution of
Adamu, which reaches a final loss of -0.0005 over the course of 200 epochs. The smoother and faster
convergence in this plot highlights Adamu’s ability to optimize the model more efficiently, demonstrating
superior performance compared to SGD.

Finally, Figure 5 illustrates how well Adamu fits the data. The almost straight line in this plot indicates
that Adamu has effectively learned the underlying relationship in the data, providing a much better fit com-
pared to SGD. This near-perfect fit is a clear indicator of Adamu’s effectiveness in capturing the patterns
within the dataset.

Overall, Adamu outperforms SGD in both convergence speed and model fitting, achieving better results
with significantly higher accuracy and faster convergence.

Figure 2: Loss evolution of SGD over 200 epochs, reaching a final loss of -0.1. The curve indicates slow
and somewhat erratic convergence.
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Figure 3: Model fitting with SGD. The curvy plot suggests that the model does not fit the data well, as it
is not capturing the underlying patterns effectively.

Figure 4: Loss evolution of Adamu over 200 epochs, reaching a final loss of -0.0005. The smoother and
faster convergence shows Adamu’s ability to optimize the model more efficiently.
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Figure 5: Model fitting with Adamu. The almost straight line indicates that Adamu has effectively learned
the underlying relationship in the data, providing a much better fit compared to SGD.

Conclusion
In this paper, we have introduced Adamu, a novel optimization algorithm that extends the capabilities of
Adam by introducing an empirical mean of the gradient to improve optimization stability. By addressing
the initialization bias of the moment estimates and incorporating a slight bias correction, Adamu achieves
faster convergence and better stability, making it more robust in noisy and high-dimensional optimization
landscapes. Our experiments have demonstrated that Adamu outperforms traditional methods like Adam
and SGD in terms of speed and accuracy, reaching the target 2 times faster with a 100 times higher accuracy.
These results highlight the effectiveness and efficiency of Adamu in solving optimization problems, making
it a promising optimization algorithm for a wide range of machine learning tasks.

Limitations
The proposed method, Adamu, has shown significant improvements over traditional optimization algo-
rithms like Adam and SGD. However, there are some limitations to consider. First, the performance of
Adamu may vary depending on the specific characteristics of the optimization problem, such as the com-
plexity of the objective function, the size of the dataset, and the choice of hyperparameters. Further research
is needed to explore the generalizability of Adamu across different optimization scenarios.
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